Department of Chemistry Teaching Plan Even Semester 2019

Course Outcome

Major Core VIII

Semester	: VI
Name of the Course	: Organic Chemistry IV
Course code	: CC1761

CO -**Course Outcome** PSO CL No. **Upon completion of course** students will be able to recognize optical activity and the CO - 1 **PSO - 1** R types of isomerism CO - 2 interpret the principles of **PSO - 3** Ap spectroscopy and photochemistry CO - 3 apply spectral rules to calculate λ_{max} PSO - 6 Ap values evaluate different spectra CO - 4 PSO - 5 Е CO - 5 apply ir spectra in functional group PSO - 6 С analysis know the medicinal importance and CO - 6 PSO - 8 С elucidate the structure of alkaloids classify, differentiate and synthesise <u>C</u>O - 7 **PSO - 2** An various dyes

Unit	Section	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Stereoche	emistry				
	1.	Optical activity and Chirality	2	To understand the importance of optical isomerism	Lecture, Discussion	Evaluation through short test
	2.	R-S notation, enantiomers and diastereomers	3	To differentiate enantiomers and diastereomers	Lecture, Discussion	Formative assessment
	3.	Optical activity of compounds without asymmetric carbon atoms	2	To gain knowledge about optical activity	Lecture	Formative assessment
	4.	Methods of distinguishing geometrical isomers, determination of configuration of ketoximes	3	To get idea about geometrical isomerism	Lecture	Formative assessment, Short test
	5.	Conformational analysis of ethane, n-butane and cyclohexane energy diagrams.	2	To differentiate different energy diagrams	Question answer session, Lecture	Formative assessment, Assignment
II	Spectrosc					
	1.	General principles, introduction to absorption and emission spectroscopy	2	To know about principles of spectroscopy	Lecture with PPT Illustration	Formative assessment
	2.	Types of electronic transitions- bathochromic and	2	To know the types of electronic transitions	Lecture, Illustration	Formative assessment

Total Contact hours : 60 (Including lectures, assignments and tests)

		hypsochromic shifts				
	3.	Application of Woodward Rules for calculation of λ_{max} for different molecules	2	To understand clearly about the calculation of λ_{max}	Lecture, Discussion	Formative assessment, Short test
	4.	Photochemical reactions of ketones, Norrish type I and type II reactions	4	To study about photochemica l reactions	Lecture, Discussion	Formative assessment, Online Quiz
III	Spectroso					
	1.	Molecular vibrations and origin of IR spectra - IR absorption positions of O, N and S containing functional groups	2	To know about molecular vibrations	Lecture, Illustration	Formative assessment, Assignment
	2.	Hydrogen bonding, conjugation,. IR absorptions- fingerprint region	3	To learn about fingerprint region	Lecture, Illustration	Formative assessment
	3.	Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it	4	To analyse the factors influencing chemical shift	Lecture	Formative assessment Short test
	4.	Interpretation of NMR spectra of simple compounds	3	To recognise the various spectra compounds	Lecture with PPT Illustration	Seminar, Formative assessment

IV	Alkaloids	s and Terpenoids				
	1.	Natural occurrence, structural features and isolation of alkaloids	2	To know about different alkaloids	Lecture	Formative assessment
	2.	Structural elucidation and synthesis of coniine, piperine and nicotine.	1	To understand and differentiate different alkaloids	Lecture, Discussion	Formative assessment, Short test
	3.	Significance of number of peaks and peak area. Spin-spin coupling and coupling constant.	2	To acquire knowledge about peaks and coupling constant	Lecture	Short test
	4.	Occurrence and classification of Terpenoids, isoprene rule	3	To evaluate and classify terpenoids	Lecture, Discussion	Formative assessment
	5	Elucidation of structure and synthesis of citral, geraniol, menthol and α- terpeniol.	2	To know about the structure of various terpenoids	Lecture	Formative assessment
V	Dyes					
	1.	Classification based on application and chemical structure with examples.	4	To know about the classification of dyes	Lecture, Discussion	Formative assessment
	2.	Colour and constitution of dyes. Chemistry of dyeing	3	To gather knowledge regarding thecolour and constitution of dyes	Lecture	Formative assessment
	3.	Triphenyl methane dyes -	1	To understand the synthesis	Lecture, Illustration	Formative assessment,

	malachite green, rosaniline and crystal violet.		and application of dyes		Short test
4	Phthalein dyes - Phenolphthalei n and fluorescein. Anthraquinone dyes - Alizarin Indigo dyes- Indigo.	4	To learn the synthesis and applications of phthalein and anthraquinone dyes.	Lecture, Discussion	Formative assessment, Seminar

Course Instructor: G. Leema Rose

Course Outcome

Semester	: VI	Major Core IX
Name of the Course	: Inorganic Chemistry III	
Course code	: CC1762	

CO - No.	Course Outcome Upon completion of course students will be able to	PSO	CL
CO - 1	name the coordination compounds	PSO - 1	А
CO - 2	explain the theories of coordination compounds	PSO - 1	U
CO - 3	predict the colour, magnetic properties and geometry of coordination compounds	PSO - 2	С
CO - 4	analyse the nature of bonding in coordination compounds	PSO - 3	An
CO - 5	minimize the errors in chemical estimation	PSO - 5	An
CO - 6	employ the methods to separate the inner transition elements	PSO - 4	Ар
CO - 7	compare the properties of lanthanides and actinides	PSO - 2	An
CO - 8	explain the principles of gravimetric analysis	PSO - 1	U

Teaching Plan Total Contact hours : 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Co-ordina	ation chemistry I	1		I	
1	1	Double salts – co- ordination compounds – difference, definition and terminology – co- ordination complexes and complex ions – central ion and ligands – co-ordination number – co- ordination sphere – charge on a complex ion.	3	Know the difference between double salts and coordination compounds.	Lecture, Showing available coordination compounds and double salts.	Evaluation through short test
	2	Types of ligands - examples for each. Nomenclature of co- ordination compounds	2	Name the coordination compounds.	Group discussion	Evaluation through short test
	3	Isomerism in co- ordination compounds, structural isomerism – ionisation, hydrate, co- ordination, linkage and co-ordination position isomerism.	2	Know the types of isomerism exhibited by coordination compounds.	llustration Lecture	Assignment on isomerism
	4	Stereoisomerism – geometrical isomerism in tetrahedral and octahedral complexes - optical isomerism in octahedral complexes.	2	Know the types of isomerism exhibited by tetrahedral and octahedral compounds.	Lecture, Seminar	Evaluation through short test
II	Co- ordin	ation Chemistry – II			1	
	1	Theoriesofco-ordinationcompounds-Werner'stheory-postulates-verificationofWerner'stheory-cobaltamminecomplexes.	4	Know the theories of coordination compounds	Question answer session	Multiple choice questions

	2	EAN rule – calculation	3	Predict the	Lastura	Chart tost
	2		3		Lecture	Short test
		of EAN with reference		stability of		Formative
				metal		assessment – I
				complexes.		
	3	Pauling's theory	4	Predict the	Lecture with	Short test
		(VBT) – postulates -		structure of	ppt	Formative
		application of VBT to		complexes		assessment – I
		square planar and		using VBT.		
		tetrahedral complexes,		-		
		inner and outer			Group	
		complexes – merits			discussion	
		and demerits of VBT.				
		Shapes of d-orbitals.				
	4	Crystal field theory –	5	Apply CFSE	Assignment	
		Crystal field splitting	5	and predict	on CFSE	
		of tetrahedral, square		the stability	OILCIPL	
		· •		•		
		planar and octahedral		of		
		systems. Factors		complexes.		
		affecting the value of				
		CFSE – crystal field				Multiple choice
		splitting energy values				questions
		and its application in				
		the stability of				
		complexes.				
III	Co-ordin	ation chemistry – III			1	
	1	Molecular Orbital	3	Differentiate	Illustration,	
		Theorem (MOT) MO		strong and	Seminar	Short test
		Theory (MOT)- MO		strong and	Semma	Short test
		diagrams of ML_6 type		weak field	Serrina	Short lest
		• • •				Short test
		diagrams of ML ₆ type complexes – weak and		weak field	Seminar	Short test
		diagrams of ML ₆ type complexes – weak and strong field ligands –		weak field	50mma	Short test
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series.	3	weak field ligands.		
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal	3	weak field ligands. Predict the	Lecture,	Assignment
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability	3	weak field ligands. Predict the	Lecture,	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant –	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data.	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series –	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of unstable oxidation	3	weak field ligands. Predict the stability of	Lecture, Group	
		diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of unstable oxidation state.		weak field ligands. Predict the stability of complexes.	Lecture, Group discussion	Assignment
	2 3	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of unstable oxidation	3	weak field ligands. Predict the stability of	Lecture, Group	

		1 (1		
		complexes – trans		substitution		
		effect.		reactions of		
	1		2	complexes.	T A	
	4	Metal carbonyls -	3	Apply	Lecture,	Assignment
		classification –		coordination	Illustration	
		examples – structure		compounds		
		and nature of M-L		in qualitative		
		bond in metal		and		
		carbonyls – structures		quantitative		
		of mono, di and		analysis.		
		polynuclear carbonyls				
		of Ni, Cr, Fe, Co and				
		Mn. Application of				
		complexes in				
		qualitative and				
		quantitative analysis.				
IV	Transitio	n Elements:				
	1	. Group discussion	2	Know the		
		with special reference		general		
		to electronic		characteristic		
		configuration,		S		
		oxidation state,		of transition		
		spectral and magnetic		elements.		
		properties, colour,				
		variable valency-				
		polyvalency of				Multiple choice
		Vanadium-magnetic				questions
		and catalytic				
		properties, ability to				
		form complexes.				
	2	Difference between the	3	Differentiate	Lecture with	Formative
		first, second and third		the transition	ppt	assessment - II
		transition series.		series.		
		Extraction, properties				
		and uses of Cu, Co and				
		Ni. Preparation and				
		uses of titanium(II)				
		oxide, vanadium (V)				
		oxide, potassium				
		dichromate, potassium				
		permanganate, potassiu				
		m ferrocyanide,				
		Potassium				
		ferricyanide, Vaska's				
		compound, platinum				
		Piumum		I	1	1

		(IV) ablarida				
		(IV) chloride,				
		chloroplatinic acid and				
		purple of Cassius.			.	
	3	Inner transition	3	Know the	Lecture	
		Elements: Electronic		general		
		configuration,		characteristic		
		oxidation states,		s of inner		Quiz
		colour, spectral and		transition		
		magnetic properties.		elements.		
		Causes and				
		consequences of				
		lanthanide contraction				
	4	Extraction of	4	Compare	Lecture	Quiz
		lanthanides from		lanthanides		
		monazite sand -		and actinides		
		separation of		und detinides		
		lanthanides by ion-				
		exchange method -				
		uses of lanthanides.				
		Comparison between				
		lanthanides and actinides.				
	5		2	V	T 4	0
	5	Extraction, properties	Z	Know the	Lecture with	Quiz
		and uses of thorium		extraction of	ppt	
		and uranium - zinc		Th and U		
		uranyl acetate				
		,Uranium				
		hexafluroide.				
V	Analytica	l Chemistry		1		
	1	Types of errors-	3	Gain		
		determinate and		knowledge		
		indeterminate errors-		about errors.	Group	
		minimization of errors.			discussion	Short test
		Precision and				
		accuracy- Comparison				
		of precision and				
		accuracy with example				
	2	Standard deviation-	2	Calculate	Lecture.	Assignment
		mean deviation –		standard		-
		relative mean		deviation and		
		deviation and		mean		
		coefficient of variance.		deviation		
		Accuracy- absolute				
		error- relative error-				
		confidence limit-				
		Rejection of a doubtful				

3	value – Q Test and student T test . Principles and requirements of gravimetric analysis, gravimetric steps- digestion, filtration, washing, drying and ignition.	2	Apply the principles of gravimetric analysis.	Demonstrati on	Formative assessment – III
4	Mechanism of precipitation – factors affecting solubility of precipitate – co- precipitation- different types – prevention- post precipitation – prevention and difference between co- precipitation and post precipitation, precipitation, precipitation from homogenous solution with examples.	4	Apply the principles of gravimetric analysis.	Lecture using ppt	Formative assessment – III

Course Instructor: R.Gladis Latha

Course Outcome

Semester	: VI
Name of the Course	: Physical Chemistry III
Course code	: CC1763

CO - No.	Course Outcome Upon completion of course students will be able to	PSO -	CL
CO - 1	Recall phase rule.	PSO - 1	R
CO - 2	Understand phase diagrams	PSO - 1	С
CO - 3	Differentiate various photochemical processes	PSO - 4	U
CO - 4	Interpret Jablonski diagram	PSO - 4	Ар
CO - 5	Apply the electrochemical principles in batteries	PSO - 3	Ар
CO - 6	To deduce the expressions of rate constant	PSO - 5	An
CO - 7	Evaluate pH using electrodes.	PSO - 5	Е
CO - 8	Elucidate the structure of molecules using spectral data	PSO - 8	С

Teaching Plan Total Contact hours : 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation		
Ι	I Phase Equilibria							
	1.	Concept of phase , components and degrees of freedom (definitions and examples) Derivation of Gibb's phase rule.	2	To derive Gibb's phase rule	Lecture, Discussion			
	2.	Phase diagram for one component system – water and sulphur system	2	Construct phase diagram for water and sulphur system	Lecture			
	3.	Two component system	1	To construct phase diagram for two component system	Lecture, Discussion			
	4.	Reduced phase rule and simple eutectic systems.	1	Construct phase diagram for simple eutectic system	Ppt presentation	Formative assessment,		
	5.	Lead-silver system – Pattinson's process of de- silverisation of lead,freezing mixtures-KI-H ₂ O system	2	Understand de- silverisation and potassium iodide-water system	Lecture	Short test, Assignment, MCQ		
	6.	Formation of compounds with congruent melting point	1	Understand congruent melting point	Ppt presentation			
	7.	Zinc-magnesium system and FeCl ₃ - H ₂ O system. Formation of compounds with incongruent melting points	2	Understand FeCl ₃ -H ₂ O system and incongruent melting points	Lecture			
	8.	Na ₂ SO ₄ -H ₂ O system and Solid-	1	Construct Na ₂ SO ₄ -H ₂ O	Lecture			

		gas equilibria		system		
	9.	CuSO ₄ -H ₂ O	1	Construct	Question	
		system.		CuSO ₄ -H ₂ O	answer	
				system	session	
					Lecture	
	10.	Efflorescen	1	Underst	Lecture,	
		ce, deliquescence		and	Discussion	
		and hygroscopy		Efflorescence,		
				deliquescence		
				and hygroscopy		
II	Chemical K	inetics				
	1.	Rate of	2	To know factors	Lecture	
		reaction, expression		influencing rate	with PPT	
		of rate, factors		of reaction and	Illustration	
		influencing rate of		theories of		
		reaction and		reaction rates		
		theories of reaction				
	2	rates	1	The dependence of	T. a. a fara wa	
	2.	Order and	1	Understand order and	Lecture, Illustration	
		molecularity of a reaction		molecularity of	mustration	
		Teaction		a reaction		
	3.	Definition and	1	Differentiate	Lecture,	
	5.	examples,	-	order and	Discussion	
		differences between		molecularity of		
		order and		a reaction		
		molecularity of a				Formative
		reaction				assessment, Short test,
	4.	Various orders of	2	Derive zero,	Ppt	Assignment,
		reaction and their		first and second	presentation	MCQ
		derivation zero,		order reaction.		Mey
		first and second				
		order reaction	1	17	T	
	5.	Definition,	1	Know rate	Lecture	
		examples and derivation of rate		constant and		
				half life period of a reaction		
		constant and half life period.		or a reaction		
	6.	Methods of	2	Determine	Ppt	
	0.	determining order	-	order of	presentation	
		of reaction, use of		reaction	Presentation	
		Differential,				
		Integral, Half-life				
		method and				
		Ostwald's isolation				

		methods.				
	7	Concept of	1	Derive	Lecture	
	-	activation energy,		Arrhenius		
		effect of catalyst		equation		
		and calculation of		1		
		energy of activation				
		(Arrhenius				
		equation)				
	8	Collision theory of	1	Derive	Lecture	
		bimolecular		activated		
		gaseous reactions(complex theory		
		activated complex				
		theory)				
	9	Comparison of	1	Differentiate	Question	
		collision theory and		collision theory	answer	
		activated complex		and activated	session	
		theory.	-	complex theory	Lecture	
	10	T · 1 · 1	2	Derive	Lecture,	
		Lindeman's		Lindeman's	Discussion	
		theoryofunimolecul		theoryofunimol		
		arreactions and		ecularreactions		
		solving problems		and able to		
				slove problems in this topic		
III	Electrochen	nictmy I		in this topic		
	1.	Definition of	1	Know	Lecture,	
	1.	conductance,	1	conductance,	Illustration	
		specific		specific	mustrution	
		conductance,		conductance,		
		equivalent		equivalent		
		conductance and		conductance		
		molar conductance		and molar		
				conductance		
	2.	Factors affecting	1	Understand	Lecture,	Formative
		conductance of a		factors affecting	Illustration	assessment,
		solution		conductance of		Short test,
				a solution		Assignment,
	3.	Transport number,	1	Able to	Lecture	MCQ
		determination of		determine		
		transport number		transport		
		by Hittorf's method		number		
		and moving				
		boundary method			.	
	4.	Strong and weak	2	Able to derive	Lecture	
		electrolytes		Debye-	with PPT	
		,variation of		Huckeltheory of	Illustration	

				-4		
		equivalent conductance with		strong electrolytes		
		dilution and Debye-		cicculorytes		
		Huckeltheory of				
		strong electrolytes				
	5.	Debye-	2	Derive Debye-	Question	
		HuckelOnsagarequ		HuckelOnsagar	answer	
		ation.Kohlrausch'sl		equation and	session	
		aw and its		Kohlrausch'sla	Lecture	
	6.	applications Applications of	2	w Understand the	Lecture,	
	0.	conductance	2	applications of	Discussion	
		measurements		conductance	Discussion	
		medsurements		measurements		
	7.	Determination of	1	Determine	Lecture,	
		λ infinity of		degree of	Illustration	
		weak acid and		dissociation of		
		weak base and		weak		
		degree of		electrolytes		
		dissociation of				
		weak				
	0	electrolytes	2	II. de unte a d	T a stanus	
	8.	Solubility and	3	Understand	Lecture	
		solubility products of sparingly soluble		solubility and solubility		
		salts and		products of		
		conductometric		sparingly		
		titrations and		soluble salts		
		solvingproblems.		and		
				conductometrict		
				itrations.		
				Able to solve		
				problems in this		
				topic		
IV	Electrochen	•	2	T T 1 / 1	T	
	1.	Electrochemical cells ,chemical cells	2	Understand Electrochemical	Lecture	Formative
		,reversible and		cells –chemical		assessment, Short test,
		irreversible cells		cells –		Assignment,
		and		reversible and		MCQ
		determinationof		irreversible		
		EMF of cells		cells -EMF of		
				cells		
	2.	Cell	1	Know various		
		representation, singl		types of	Lecture,	
		e electrode		electrodes	Discussion	

			1	1
3.	potential,types of electrodes, metal- metal ion electrodes, amalgam electrodes and gas electrodes. Insoluble metal salt	2	Understand	Lecture
З.	electrodes and oxidation – reduction electrodes.Standard hydrogen electrode (SHE) and calomel electrode	2	standard hydrogen electrode (SHE) and calomel electrode	Lecture
4.	Derivation of Nernst equation	1	Derive Nernst equation for emf of cells	Lecture, Discussion
5.	Standard electrode potential, electro chemical series, thermodynamics of galvanic cells, $\Delta G, \Delta H, \Delta S$ and equilibrium constant (K).	2	To know electro chemical series and thermodynamic s of galvanic cells $\Delta G, \Delta H and \Delta S$ and equilibrium constant (K)	Lecture with PPT Illustration
6.	Concentration cells –with transference and without transference ,liquid junction potential and its elimination.	1	Understand Concentration cells with transference and without transference and liquid junction potential and its elimination	Question answer session Lecture
7.	Applications of EMF measurements ,determination of transport number, valency of an ion, pH of a solution using hydrogen, quinhydrone and glass electrode.	2	Able to grasp Applications of EMF measurements,d etermination of transport number, valency of an ion, pH of a solution using	Lecture, Discussion

	8	Potentiometric titrations - acid- base, oxidation reduction and precipitation titrations.	1	hydrogen, quinhydrone and glass electrode. Understand Potentiometric titrations	Lecture, Illustration	
	9	Decomposition potential and overvoltageand solving Problems	2	Know decomposition potential and overvoltage. Can able to solve problems from this topic	Lecture	
V	Spectroscop)y	l	····· ···	1	<u> </u>
	1.	Different regions of EMR spectrum, Born-Openheimer approximation ,types of molecular spectra – microwave (rotational) spectra theoretical principle, selection rule and applications in the determination of bond distance in diatomic molecules	4	To classify different regions of EMR and know about microwave spectroscopy.	Lecture, Discussion	Formative assessment, Short test, Assignment, MCQ
	2.	Vibrational (IR) spectra – theoretical principle, harmonic oscillator and unharmonicity – selection rule, intensity, modes of vibrations and types , force constant , applications of IR– hydrogen bonding	3	To gather knowledge regarding Vibrational spectra(IR)	Lecture	

3.	,Inter and Intramolecular hydrogen bonding Fermi resonance, overtones and combination bands.	1	To understand Fermi resonance, over tones and combination	Lecture, Illustration
4	Electronic spectra - selection rules, Frank types of transitions and pplications. Raman spectra - theoretical principle ,stokes and antistokes lines	2	bands To know Electronic and Raman spectra	Lecture, Discussion
5.	Comparison of IR & Raman Spectroscopy.	1	Differentiate between Raman spectra and IR Spectra.	Lecture, Discussion
6.	ESR spectra- theory and principle and hyperfine splitting ESR spectra of methyl radical .	2	To understand ESR Spectra	Lecture, Illustration

Course Instructor: M. Anitha Malbi